Publications

/Publications
Publications2021-07-16T12:32:24+02:00

Publications

On the Suitability of Raman Spectroscopy to Monitor the Degree of Graphene Functionalization by Diazonium Salts

Sampathkumar K., Diez-Cabanes V., Kovaricek P., Del Corro E., Bouša M., Hošek J., Kalbac M., Frank O. Journal of Physical Chemistry C123 (36): 22397 – 22402. 2019. 10.1021/acs.jpcc.9b06516. IF: 4.309

Raman spectroscopy is undoubtedly the most frequently used technique for universal characterization of graphene and related materials. Quantification of parameters like disorder or strain is possible through analysis of particular Raman bands. However, under certain conditions, such evaluation can be jeopardized by – sometimes hidden – convolution of more overlapping effects. In this work, graphene functionalization by the common nitrobenzenediazonium salt under simultaneous biaxial tensile deformation induced by substrate swelling was investigated by Raman spectroscopy. As expected, the disorder-related D band appeared in the spectra documenting the covalent attack on the graphene lattice. However, the strain-induced shift of the graphene bands exposed additional peaks, masked at exactly the same positions as the unstrained graphene bands. The new bands were assigned to vibrations of the diazonium molecule and its decomposition products adsorbed on top of the functionalized graphene. The external strain thus provided means for more correct quantification of the lattice disorder. © 2019 American Chemical Society.

View publication

Crossover from ballistic to diffusive thermal transport in suspended graphene membranes

El Sachat A., Köenemann F., Menges F., Del Corro E., Garrido J.A., Sotomayor Torres C.M., Alzina F., Gotsmann B. 2D Materials6 (2, 025034) 2019. 10.1088/2053-1583/ab097d. IF: 7.343

We report heat transport measurements on suspended single-layer graphene disks with radius of 150-1600 nm using a high-vacuum scanning thermal microscope. The results of this study revealed a radius-dependent thermal contact resistance between tip and graphene, with values between 1.15 and 1.52 × 108 KW-1. The observed scaling of thermal resistance with radius is interpreted in terms of ballistic phonon transport in suspended graphene discs with radius smaller than 775 nm. In larger suspended graphene discs (radius >775 nm), the thermal resistance increases with radius, which is attributed to in-plane heat transport being limited by phonon-phonon resistive scattering processes, which resulted in a transition from ballistic to diffusive thermal transport. In addition, by simultaneously mapping topography and steady-state heat flux signals between a self-heated scanning probe sensor and graphene with 17 nm thermal spatial resolution, we demonstrated that the surface quality of the suspended graphene and its connectivity with the Si/SiO2 substrate play a determining role in thermal transport. Our approach allows the investigation of heat transport in suspended graphene at sub-micrometre length scales and overcomes major limitations of conventional experimental methods usually caused by extrinsic thermal contact resistances, assumptions on the value of the graphene’s optical absorbance and limited thermal spatial resolution. © 2019 IOP Publishing Ltd.

View publication

Versatile Graphene-Based Platform for Robust Nanobiohybrid Interfaces

Bueno R., Marciello M., Moreno M., Sánchez-Sánchez C., Martinez J.I., Martinez L., Prats-Alfonso E., Guimerà-Brunet A., Garrido J.A., Villa R., Mompean F., García-Hernandez M., Huttel Y., Morales M.D.P., Briones C., López M.F., Ellis G.J., Vázquez L., Martín-Gago J.A. ACS Omega4 (2): 3287 – 3297. 2019. 10.1021/acsomega.8b03152. IF: 2.584

Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multitechnique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed. © Copyright 2019 American Chemical Society.

View publication

Long-Term Functionality of Transversal Intraneural Electrodes is Improved by Dexamethasone Treatment

De La Oliva N., Del Valle J., Delgado-Martinez I., Mueller M., Stieglitz T., Navarro X. IEEE Transactions on Neural Systems and Rehabilitation Engineering27 (3, 8633873): 457 – 464. 2019. 10.1109/TNSRE.2019.2897256. IF: 3.478

Neuroprostheses aimed to restore lost functions after a limb amputation are based on the interaction with the nervous system by means of neural interfaces. Among the different designs, intraneural electrodes implanted in peripheral nerves represent a good strategy to stimulate nerve fibers to send sensory feedback and to record nerve signals to control the prosthetic limb. However, intraneural electrodes, as any device implanted in the body, induce a foreign body reaction (FBR) that results in the tissue encapsulation of the device. The FBR causes a progressive decline of the electrode functionality over time due to the physical separation between the electrode active sites and the axons to the interface. Modulation of the inflammatory response has arisen as a good strategy to reduce the FBR and maintain electrode functionality. In this paper, transversal intraneural multi-channel electrodes (TIMEs) were implanted in the rat sciatic nerve and tested for three months to evaluate stimulation and recording capabilities under chronic administration of dexamethasone. Dexamethasone treatment significantly reduced the threshold for evoking muscle responses during the follow-up compared to saline-treated animals, without affecting the selectivity of stimulation. However, dexamethasone treatment did not improve the signal-to-noise ratio of the recorded neural signals. Dexamethasone treatment allowed to maintain more working active sites along time than saline treatment. Thus, systemic administration of dexamethasone appears as a useful treatment in chronically implanted animals with neural electrodes as it increases the number of functioning contacts of the implanted TIME and reduces the intensity needed to stimulate the nerve. © 2001-2011 IEEE.

View publication

High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors

Eduard Masvidal-Codina, Xavi Illa, Miguel Dasilva, Andrea Bonaccini Calia, Tanja Dragojević, Ernesto E. Vidal-Rosas, Elisabet Prats-Alfonso, Javier Martínez-Aguilar, Jose M. De la Cruz, Ramon Garcia-Cortadella, Philippe Godignon, Gemma Rius, Alessandra Camassa, Elena Del Corro, Jessica Bousquet, Clement Hébert, Turgut Durduran, Rosa Villa, Maria V. Sanchez-Vives, Jose A. Garrido, Anton Guimerà-Brunet. Nature Materials (2018). Published: 31 December 2018. DOI: 10.1038/s41563-018-0249-4

Recording infraslow brain signals (<0.1 Hz) with microelectrodes is severely hampered by current microelectrode materials, primarily due to limitations resulting from voltage drift and high electrode impedance. Hence, most recording systems include high-pass filters that solve saturation issues but come hand in hand with loss of physiological and pathological information. In this work, we use flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrate that gSGFETs are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth. The wide recording bandwidth results from the direct field-effect coupling of the active transistor, in contrast to standard passive electrodes, as well as from the electrochemical inertness of graphene. Taking advantage of such functionality, we envision broad applications of gSGFET technology for monitoring infraslow brain activity both in research and in the clinic. © 2018, The Author(s), under exclusive licence to Springer Nature Limited.

View publication

Dexamethasone Reduces the Foreign Body Reaction to Intraneural Electrode Implants in the Peripheral Nerve of the Rat

De la Oliva N., Navarro X., del Valle J. Anatomical Record301 (10): 1722 – 1733. 2018. 10.1002/ar.23920. IF: 1.373

Intraneural electrodes must be in intimate contact with nerve fibers to have a proper function, but this interface is compromised due to the foreign body reaction (FBR). The FBR is characterized by a first inflammatory phase followed by a second anti-inflammatory and fibrotic phase, which results in the formation of a tissue capsule around the implant, causing physical separation between the active sites of the electrode and the nerve fibers. We have tested systemically several anti-inflammatory drugs such as dexamethasone (subcutaneous), ibuprofen and maraviroc (oral) to reduce macrophage activation, as well as clodronate liposomes (intraperitoneal) to reduce monocyte/macrophage infiltration, and sildenafil (oral) as an antifibrotic drug to reduce collagen deposition in an FBR model with longitudinal Parylene C intraneural implants in the rat sciatic nerve. Treatment with dexamethasone, ibuprofen, or clodronate significantly reduced the inflammatory reaction in the nerve in comparison to the saline group after 2 weeks of the implant, whereas sildenafil and maraviroc had no effect on infiltration of macrophages in the nerve. However, only dexamethasone was able to significantly reduce the matrix deposition around the implant. Similar positive results were obtained with dexamethasone in the case of polyimide-based intraneural implants, another polymer substrate for the electrode. These results indicate that inflammation triggers the FBR in peripheral nerves, and that anti-inflammatory treatment with dexamethasone may have beneficial effects on lengthening intraneural interface functionality. Anat Rec, 301:1722–1733, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

View publication
Our website uses cookies and third party services to distinguish you from other users of our website. This helps us to provide you with a positive experience when you browse our website and also allows us to improve our site and services. By continuing to browse the site, you are agreeing to our use of cookies. Ok